

High pressure gas TPC in the DUNE beamline

George Christodoulou
DUNE ND Meeting
24/09/2015

Overview

- Benefits of high pressure (HP) gas TPC
- Updates of the HP gas TPC simulation
 - Initially developed by T. Stainer et al for LBNO
 - https://dpncindico.unige.ch/indico/getFile.py/access?resId=0&materialId=1&confId=354
 - Adopted and improved for DUNE
- First simulation results
 - Event rates
 - Signals and backgrounds

Benefits of HP gas TPC

- Magnetized and $\sim 4\pi$ coverage
- Same target as the DUNE far detector
- Pressure and target flexibility
 - He, Ne, Ar, CF4 can be used to study A-dependence and FSI
- Excellent PID
- Low density and low thresholds
 - Sensitivity to \leq 100 MeV/c protons and \leq 25 MeV/c muons and pions
 - Model testing and generator tuning
 - 2p2h, spectral functions, FSI
 - 1π and high mass resonance

Detection of soft tracks in HP TPC

• Soft protons can be undetectable in LAr

Gas TPC neutrino event in T2K near detector

P. Hamilton

Low energy sensitivity in gas TPC – example from T2K near detector

Basic design of the HP TPC for DUNE

HP TPC simulation for DUNE

- Near detector located 459m from the target
- Test and debugging production of 1.5×10¹⁹ POT for forward horn current (FHC)
- Flux files provided by Laura Fields
 - "Nominal" beam simulation version v3r3p5 at 200kA
- Simulate only the HPTPC gas volume and the vessel
 - Flux+Genie+Geant4
 - Code in https://github.com/DUNE/wp1-neardetector
 - 4.0×4.0×4.0 m
 - 20 bar, \sim 550 kg, 0.035g/cm³
 - \sim 35k events/1.5×10¹⁹ POT in the gas volume
 - ~10 times more events in the 10 cm thick aluminium vessel
 - 70% give some activity in the HPTPC

Neutrino interactions for FHC in the HP TPC

Primary state topology	%
ν_{μ} CC-0 π	9.4
$ u_{\mu}$ CC-1 π^{\pm}	15.0
ν_{μ} CC-1 π^{0}	4.9
ν_{μ} CC-1 π^{\pm} 1 π^{0}	4.4
$ u_{\mu}$ CC-Other	30.5
NC	25.0
$ar{ u}_{\mu}$ CC	8.3
$ u_{\rm e}$ - $ u_{\rm e}$ CC	2.2

$ u_{\mu}$ interaction	%
CC-QEL	10.5
CC-RES	28.5
CC-DIS	35.9
СС-СОН	0.4
NC-QEL	3.7
NC-RES	9.5
NC-DIS	11.3
NC-COH	0.2
Other	<0.1

FHC true topology

Multiplicity at the generator level

Momentum distributions at the generator level

dE/dx in the 20 bar HP TPC

Pile-up in the near detector

- For every 1 neutrino interaction in the HPTPC Ar Gas
 - \bullet ~10 neutrino interactions in the vessel (from simulation)
 - ~125 neutrino interactions in the ECAL (estimated)
 - Assuming 30cm pure scintillation detector
 - ~625 neutrino interactions in the magnet (estimated)
 - Assuming 50cm iron
- Challenges
 - Veto against charged particle tracks coming outside the HPTPC volume
 - Reconstruction of ECAL neutral clusters

Preliminary example of event selection in the HP TPC – $CC1\pi^{\pm}$

- Preliminary event selection not optimized
 - Fiducial volume box reduced by 70cm from the HPTPC box in all directions
 - Track length > 25 cm
 - P > 25 MeV/c
 - Highest momentum track is $\mu^{\scriptscriptstyle -}$ or $\pi^{\scriptscriptstyle -}$
 - Only one π^{\pm}

 No tracks starting >15cm from the vertex

11	70		CG-0π CC-1π CC-1π ⁰
	60		CC-0ther
	50		NC CC-v _µ
	40		CC-v _e v _e Out of FV
	30		
r	20		
	10		
	00	2 4	6 8 10 p _{true} [GeV/c]

Events /1.5×10 ¹⁹ POT	Efficiency (%)	Purity (%)	Events with a FS π ⁰ (%)
2315	22.7	59.6	24.5

Preliminary example of event selection in the HP TPC - CC- v_e inclusive

- Preliminary event selection not optimized
 - Fiducial volume box reduced by 70cm from the HPTPC box in all directions
 - Track length > 25 cm
 - P > 25 MeV/c
 - Highest momentum track is e
 - No other e⁻/e⁺ tracks
 - No tracks starting >15cm from the vertex
- π^0 induced background dominated near the 1st and 2nd oscillation maximum
- Need more careful studies

Events / 1.5×10 ¹⁹ POT	Efficiency (%)	Purity (%)
1368	21.6	9.3

Summary and future plans

- HPTPC provides an opportunity to detect vertex activity beyond the sensitivity of LAr detectors
- First version of the HPTPC simulation for DUNE has been developed
- Preliminary results look promising
- Next steps
 - New MC production of 10²⁰ FHC POT with updated flux files available soon
 - Introduce reconstruction efficiencies and PID
 - Understand signal and backgrounds
 - Deal with the pile-up from neutrino interactions outside the HPTPC volume
 - Start thinking about the ECAL
 - Optimum design, technology etc

Back up

The new FNAL flux files

- DUNE uses a different flux n-tuple than the other Fermilab experiments
 - Flux files have to be converted to the new flux file format (Dk2nu)
 - At the moment this is only possible by obtaining the Dk2nu package
 - Later Genie releases will have this implemented
 - Change the beam window in GNuMIFlux.xml
 - Run the new gevgen_fnal or gevgen_numi from Dk2nu

The role of near detector for DUNE

- Constrain the systematic uncertainties for the neutrino oscillation measurements
 - Select various inclusive and semi-inclusive samples for all neutrino species
 - (Anti-)Neutrino energy scale
 - Background channels for the oscillation analysis (π^0 ,etc)
 - Cover first and second oscillation maximum

Neutrino cross section measurements

• New physics in the short baseline¹⁰

Particle identification using dE/dx

- Proven technology, well understood used for many years
- Advantages
 - Excellent PID in a broad momentum range
 - Very good momentum resolution
- Disadvantages
 - No muon-pion separation
 - Regions where the energy loss curves cross

How to run the simulation using realistic flux and geometry

High pressure gas gain

• Micromegas-TPC operation at high pressure in xenon-trimethylamine mixtures (arXiv:1210.3287)

HP TPC T₀

- Need to determine t0 for the time co-ordinate
 - Use the ECAL
 - Issue with low energy tracks
 - Light emitted during ionization
 - PMTs inside the detector
 - Gas mixture light absorption
 - Wavelength < 128 nm
 - Transverse diffusion
 - Number of channels